

Test report No. 19848A

Sponsor

UNILIN BVBA DIVISION PANELS Ingelmunstersteenweg 229 8780-Oostrozebeke BELGIUM

Construction product and trade names

Fibralux FR (former trade name Firax); Flameblock™

Nature of the test

Full-scale room test for surface products according to ISO 9705 – 1stedition 1993 and ISO 9705-1:2016

Summary of the results

FIGRA _{RC} (kW/s)	0,99
THR _{RC} (MJ)	64,2
SMOGRA _{RC} (m²/s²)	179,88
TSP _{RC} (m ²)	1215
Time to flash over (s)	705

PREPARED BY	APPROVED BY

This report consists of 19 pages including 1 annex

This document is the original version of this test report and is written in English.

This report may be used only literally and completely for publications. - For publications of certain texts, in which this report is mentioned, our permission must be obtained in advance.

The authenticity of the electronic signatures is assured by Belgium Root CA.

1. <u>TEST MATERIAL</u>

The firm UNILIN BVBA Division Panels, provided the laboratory with Fibromax FR MDF-boards on the 24th of July 2019, intended for a full-scale room test for surface products. The laboratory supervised with the specimen fabrication.

Sampling details:

Sampling by : Unilin division Panels, Koen Nel

Sampling date : 14th of June 2019

Sample ID : 4190429

Production place : Unilin division Panels, Vielsalm

Rue de la Forêt, 6690 Vielsalm

Production line : MDF line

Production date : 25th of April 2019 Identification within the quality system : PO 4144498

Description of the material:

This description is based on information given by the sponsor.

•	<u> </u>		
	Nominal value	Measured value	
WALL COVERING			
Material	MDF panel, type MDF.LA (EN622-	MDF panel, type MDF.LA (EN622-5)	
Trade names	Fibralux FR (former trade name Fi	Fibralux FR (former trade name Firax); FlameblockTM	
Manufacturer / Supplier	UNILIN BVBA Division Panels	UNILIN BVBA Division Panels	
Colour	Brown-red		
Thickness (mm)	12,0	12,2	
Density (kg/m³)	730	755	
Flame retardants	Yes	(1)	
Fixing method	Mechanically directly to the wall		
Type and amount of fixing	Chipboard screws #6x60mm 15 per panel Screw hole centres 50mm from side of panel Drawing see annex 1		
Reaction to fire according to EN 13501-1	B-s1, d0		

⁽¹⁾ Not verifiable

2. <u>DESCRIPTION OF THE TEST METHOD</u>

The fire test is carried out according to the ISO 9705:1993. The ISO 9705:1993 prescribes the following procedure:

✓ -2 – 0 minutes: Start registering data from the test

✓ 0 – 10 minutes: heat output level of the burner: 100 kW

√ 10 – 20 minutes: heat output level of the burner: 300 kW

✓ 20 minutes: extinction of the burner

3 TEST CONDITIONS

Test date: 01/07/2019

Ambient temperature: 22,5 °C Ambient pressure: 101500 Pa

Humidity: 53%

4. CALIBRATION RESULTS

Latest calibration date: 01/04/2019 Calibration results: see annex 3

4 OBSERVATIONS AND MEASUREMENTS DURING THE TEST

4.1 visual observations

Time (min:sec)	Observation
-02:00	Start of data acquisition system
00:01	Ignition of the burner to the level of 100kW
02:55	Development of smoke
09:59	Burner level increased to 300 kW
12:10	Spread of flames across the ceiling and the walls, both occurred at the
	same moment (*)
12:15	Ceiling ignites
12:30	Wall covering ignites
13:00	Flash over, based on visual observations
13:37	First flames through the door opening
13:58	Mechanical failure of the test specimen: MDF-board which is part of the
	ceiling falls apart in back left corner
16:23	Flaming droplets
18:35	Test stop

^(*) Concerning the walls, spread of flames is considered as the moment the flames spread in the area 0,5 m above floor level and at a distance of minimum 1,2m from the burner.

Time at which the sum of the Heat release rate from the ignition source and the product reaches 1 MW: 13:45**

(**) This time, is the moment in time defined as flash-over, according to ISO9705:1993 and 2016.

Pictures of the test: see annex 2

4.2 Volume flow and temperature in exhaust duct

Graphs see Annex 4

4.3 Rate of heat release and smoke production

FIGRA (kW/s)	0,99
HRR ignition source at time of flash-over (kW)	300
Flash-over (sec)	705
THR (MJ)	64,2
SMOGRA (m²/s²)	179,88
Maximum SPR (m²/s²)	15,60
TSP (m²)	1215

Calculations according to § 6.2 of the SP report 1998:11 "Results and Analysis from Fire Tests of Building Products in ISO 9705, the Room/Corner Test – The SBI Research Programme" by *B. Sundström, P. van Hees and P. Thureson.*

Graphs in support of the results: see Annex 5

5. REMARKS

The following deviation to the standard is made: None

The test results relate only to the behaviour of the test specimens of the material under the particular conditions of the test; they are not intended to be the sole criterion for assessing the potential fire hazard of the material in use.

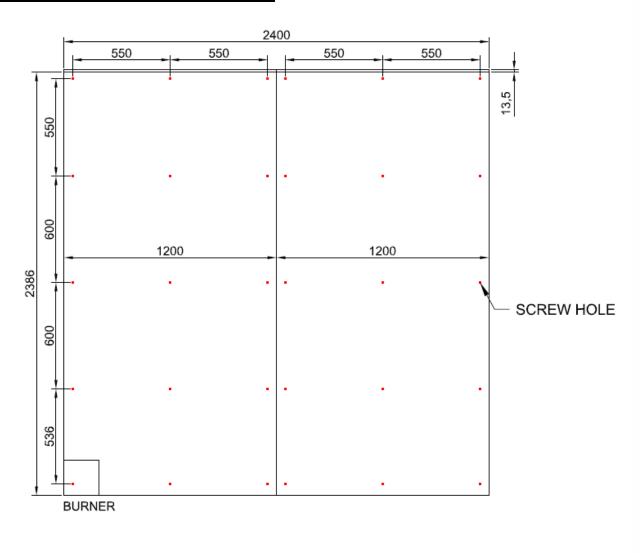
6. **GROUP ASSESSMENT**

This report assesses the fire hazard properties assigned to the product 'Fibralux FR (former trade name Firax); FlameblockTM' in accordance with the NCC 2015 Building Code of Australia - Volume One and the New Zealand Building Code (NZBC) Clause C3.4(a) and defines the group number in accordance the procedures given in with the draft standard AS 5637.1:2015 (Determination of fire hazard properties - Part 1: Wall and ceiling linings. The product 'Fibralux FR (former trade name Firax); FlameblockTM' in relation to its reaction to fire behavior for wall and ceiling linings is assessed as:

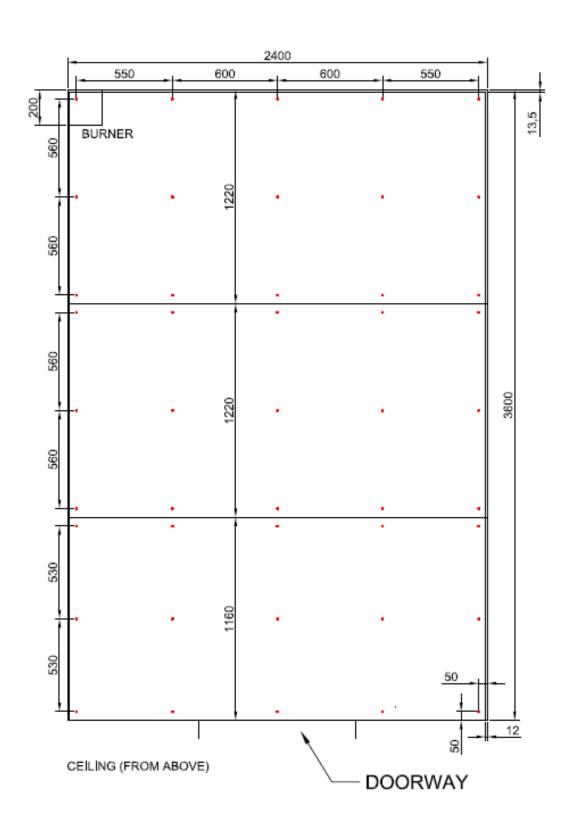
Flash over at 705s

Australian Group Number according to AS 5637.1:2015

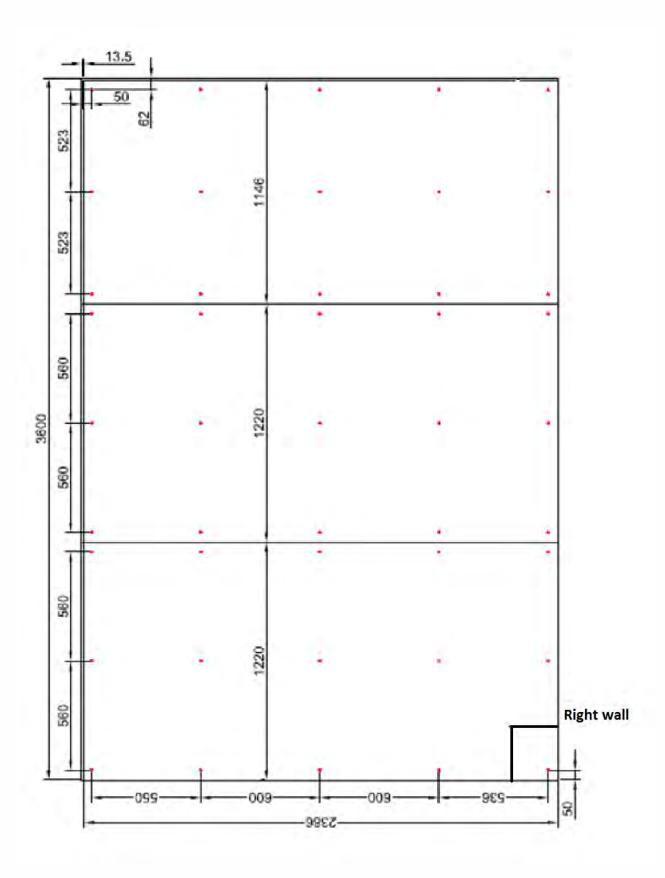
Fire behavior
Group number
2

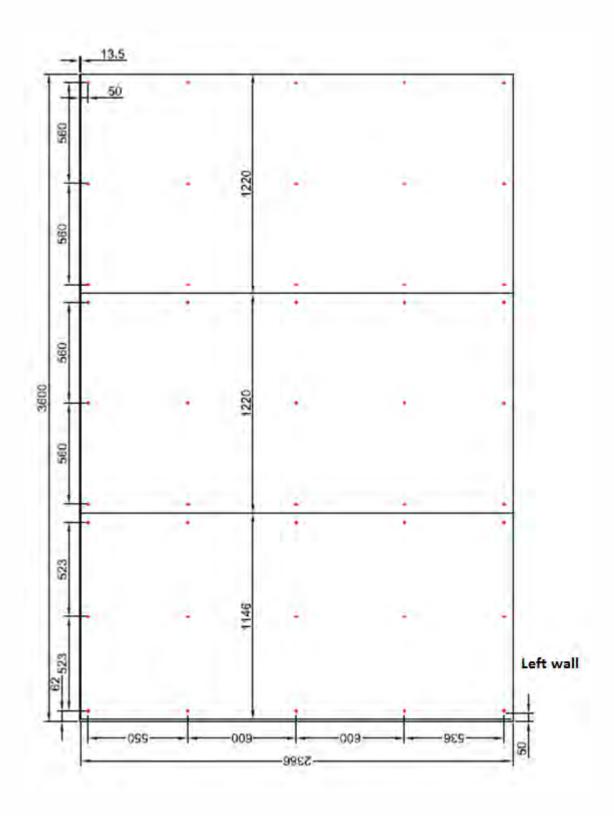

Criteria Australian Group Numbers according to AS 5637.1:2015, based on AS ISO 9705:2003 (identical to ISO 9705:1993)

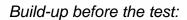
Group 1	does not reach flashover when exposed to 100kW for 600s followed by
	exposure to 300 kW for 600s.
Group 2	reaches flashover following exposure to 300kW within 600s after not
	reaching flashover when exposed to 100kW for 600s.
Group 3	reaches flashover in more than 120s but within 600s when exposed to
	100kW.
Group 4	reaches flashover within 120s when exposed to 100kW.



Annex 1: Mounting and fixing details


REAR WALL

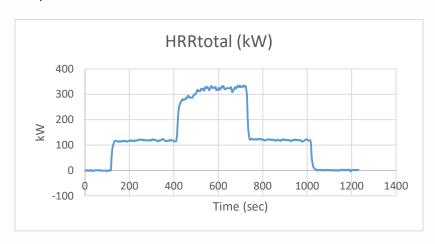


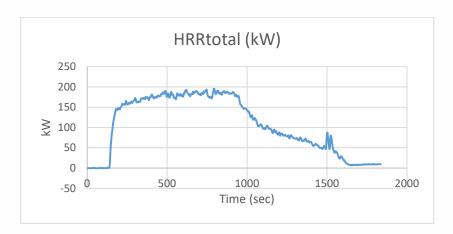


Annex 2 Photos of the specimen

During the test:

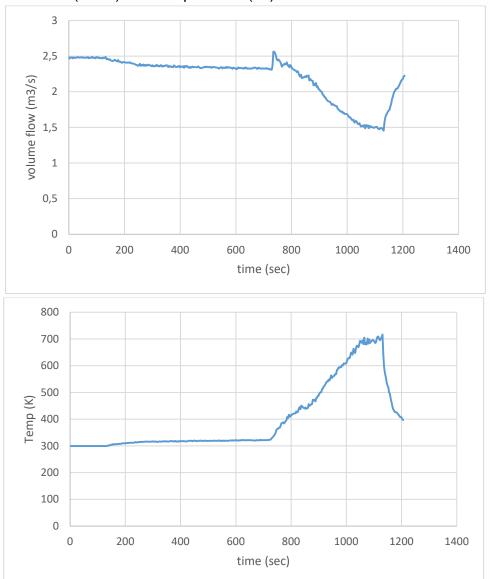
After the test:



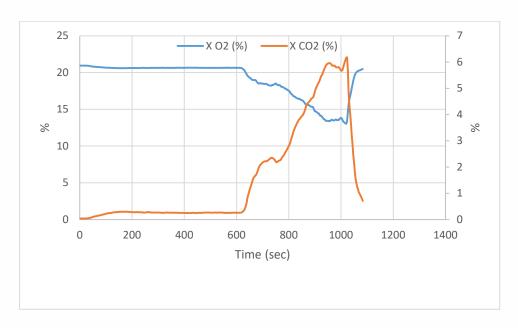


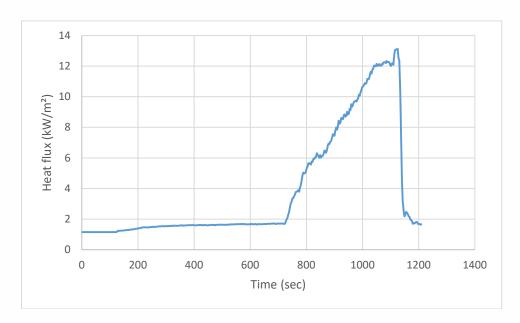
Annex 3: Calibration results

Step calibration


Methanol calibration

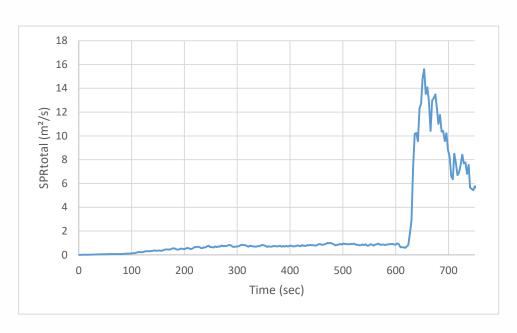
Annex 4


Volume flow (m³/s²) and temperature (°K) in exhaust duct

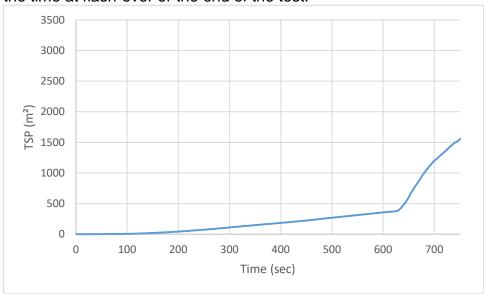


Annex 5: Test results

5.1 Gas concentrations in function of time



5.2 Heat flux at floor level



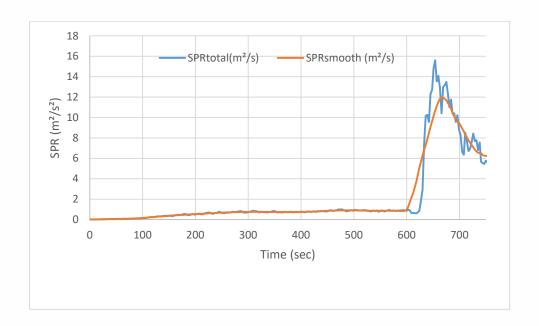
5.2 Time/smoke production rate at actual duct flow temperature in function of time:

5.4 Total smoke production

 $TSP(t) = \sum SPR(t)^*3s$ total smoke production during the time interval 0->t with t being the time at flash-over or the end of the test.

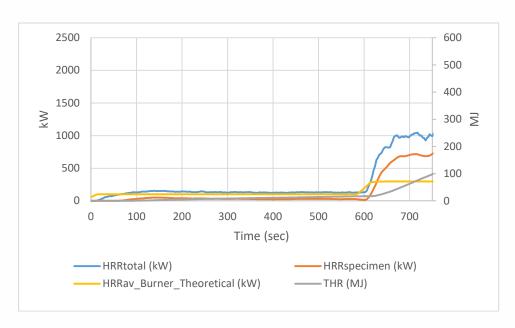
5.5 SMOGRA

 $SMOGRA = 10.000 * PeakSPR_{smooth}/t$, where

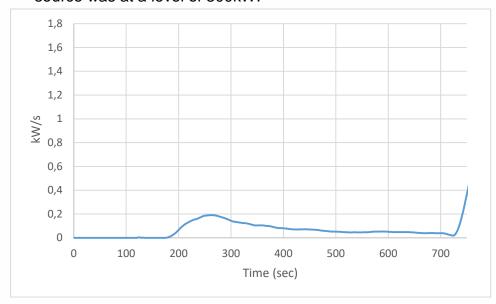

$$SPRsmooth(t) = \frac{SPR(t - 30 s) + SPR(t - 27 s) + ... + SPR(t + 27 s) + SPR(t + 30 s)}{t}$$

Peak value: at 11,98 m²/s

Correlates with a peak after 789 seconds


SMOGRA = 10.000 * (11,98 m²/s) / 666 s = 179,88 m²/s²

Time (sec)	SPRsmooth (m²/s)
657	11,11
660	11,52
663	11,84
666	11,98
669	11,91
672	11,82
675	11,68



5.6 Heat release

5.7FIGRA

 $FIGRA = PeakHRR_{product}/t \; , \; where \; PeakHRR_{product} \; is \; the \; maximum \; HRR(kW) \\ Flash \; over \; occurred \; after \; the \; 10 \; minute \; mark, \; during \; the \; time \; the \; HRR \; of \; the \; ignition \; source \; was \; at \; a \; level \; of \; 300kW.$

